Drinking Water Quality as Affected by Water Treatment, Distribution, and Source Water Quality

Geethani Arachchilage, Annemieke Farenhorst, and Francis Zvomuya
Department of Soil Science
University of Manitoba
Create H2O conference, 2014
Introduction

Raw water → Coagulation & Flocculation → Sedimentation → Filtration

Disinfection

Chlorine, Chloramines, Chlorine dioxide, Ozone, UV light

Finished water
• Cl decays in water distribution
 ▫ Volatilization
 ▫ Bulk decay – by reacting with organic/inorganic compounds in water
 ▫ Wall decay – by reacting with pipes & tank walls
• Chlorine decay –

 ▪ Decreases disinfection efficiency

 Can result microbial re-growth
Chlorine decay –

- Produces disinfection by-products (DBPs)

\[
\text{DBPs} = \text{Chlorine} + \text{organic matter}
\]

e.g., Trihalomethanes (THMs)

![Chemical structures of THMs](image)
Factors affecting on bulk chlorine decay

- Type & dose of chlorine
- Chemistry of water – composition, pH
- Natural & anthropogenic organic matter content
- Temperature
- Contact time - storage
- Sediment properties of water source
- Algal growth in source water – amount & species
Water Distribution Methods

Raw water → Coagulation & Flocculation → Sedimentation → Filtration → Disinfection → Finished water → Pipes → House holds

Cisterns → House holds
Water Systems in First Nation’s communities

<table>
<thead>
<tr>
<th></th>
<th>Manitoba (%)</th>
<th>Canada (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piped</td>
<td>51</td>
<td>72</td>
</tr>
<tr>
<td>Truck delivery - Cisterns</td>
<td>31</td>
<td>13.5</td>
</tr>
<tr>
<td>Individual Wells</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>No Water Service</td>
<td>5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Concerns about Cisterns

• Cl may react with compounds in the water & tank walls
• Cl decay may reduce the residual chlorine concentration in the cisterns
• These reactions may reduce the disinfection efficiency
• Risks in transportation of water

Baird et al., 2013 & Personal communications
Objectives

- To compare the water quality of direct pipe water & the cisterns in the communities
- To study seasonal variation of water quality (chlorine decay and DBP formation) in the cisterns
- To identify the factors (treatment/source water quality) affecting on water quality issues
Experimental Approach - Field

1. **On-site study** – Water samples from direct piped water & cisterns will be collected four times a year during spring, summer, fall, and winter to study bacterial re-growth & DBP formation.
2. **Laboratory study I** – Source water samples from the source water will be incubated under a range of chlorine concentrations & temperatures to study the chlorine decay kinetics & DBP formation.

3. **Laboratory study II** – Source water will be incubated under different light conditions to study the growth of algae in source water on DBP formation

4. **Laboratory study III** – Sediments from the source water will be incubated to study the DBP formation potential
Significance of the Research

• Research will evaluate effects of using cisterns as a drinking water storage and distribution method in First Nation’s communities

• Results will identify the potential sources of DBP precursors in drinking water

• Results can be used to develop effective and novel techniques to remove those precursors during the water treatment process.
Thank you